Tetrahedron. Vol. 27, pp. 3777 to 3783. Pergamon Press 1971. Printed in Great Britain

CALCULATION OF THE BASIC IONIZATION CONSTANTS OF ALCOHOLS FROM THE POLAR AND INDUCTIVE SUBSTITUENT CONSTANTS

L. S. LEVITT and B. W. LEVITT

Chemistry Department, School of Science, The University of Texas at El Paso, El Paso, Texas 79968

(Received in the USA 15 April 1971; Received in the UK for publication 20 April 1971)

THE ACID strengths of organic acids¹ and the base strengths of organic bases² have been correlated, in considerable detail, with the σ_p , σ_m , σ^* , and σ_l substituent constants.

The pK_{BH+} values for alkylammonium ions. $R\dot{N}H_3$. and alkylphosphonium ions. $R\dot{P}H_3$, which are accurately known, have been correlated with the substituent constants for the various R-groups.^{3,4}

The *acid* ionization constants of the aliphatic alcohols have been determined by a conductivity procedure⁵ in aqueous solution for the reaction:

$$RCH_2OH + H_2O \rightleftharpoons RCH_2O^- + H_3O^+$$
.

It was found⁵ that $pK_a = 15.9 - 1.42 \sigma^*$ for the case where RCH₂OH is a substituted MeOH.

The basicity constants,⁶ pK_{BH^+} , for the alcohols, defined for the reaction

$$ROH + H_3O^+ \Rightarrow ROH_2^+ + H_2O$$

have recently⁷ been related to the ionization potentials of the alcohols, where it was determined that

$$pK_{BH^+} = +5.73 - 0.727 E_{I^-}$$
(1)

The pK_{BH^+} values for various alcohols have not previously been correlated with the substituent constants because the pK's were known only to an approximate order of magnitude. Thus, the pK_{BH^+} values were thought⁸ to fall within the range -2 to -4. A later study⁹ of CH₃OH in aqueous H₂SO₄ using Raman spectroscopy yielded a value of -2.2 for the pK_{BH^+} of CH₃OH₂, but the method was judged⁹ unreliable for EtOH, i-PrOH, and t-BuOH by the experimenters. Subsequently, two investigations of the basicity of alcohols determined by solvent extraction¹⁰ and by their solubilities¹¹ in varying concentrations of aqueous H₂SO₄, were carried out. The following pK_{BH^+} values were arrived at: MeOH¹¹ (-2.5); n-BuOH^{10,11} (-2.3); s-BuOH^{10,11} (-2.2); and t-BuOH^{10,11} (-2.6). It was concluded¹⁰ that the effect of a change in structure of the R-group on the basicity of the alcohol is probably too small to be resolved by these experimental methods. A still more recent Raman spectral study¹² has yielded pK values much more negative (by about 2.5 units)

than those obtained previously. However, Nixon and Bursey.¹³ by means of ion cyclotron resonance determinations of the relative NO_2^+ ion affinities of gas phase alcohols, have arrived at the following basicity order: $H_2O < MeOH < EtOH < i$ -PrOH; EtOH < n-PrOH < n-BuOH. This sequence follows the trend expected on the basis of the inductive effect, though the authors prefer to relate the observed order to "substituent polarizability".¹⁴ Little is known about the behavior of water as a base,⁸ particularly insofar as definitive quantitative data are concerned: the pK_{BH}, of H₃O has been estimated in various ways as -1.80,¹⁵ -2.3,¹⁶ -3.43,¹⁷ -5.9,¹⁸ and -6.66.¹⁹

Gerrard and Macklen²⁰ have measured the solubility of anhydrous HCl in various pure alcohol solvents and have found, in general, that the alcohols with electronreleasing R-groups absorb larger quantities of gaseous HCl than those which have electron-attracting R-groups. This behaviour was interpreted, qualitatively, in terms of the relative electron densities at the oxygen atom. For example, the magnitude of the solubility of HCl at 10°, (in moles HCl/mole ROH), is found to be in the following order: $(CH_3)_3 \text{ COH} \gg CH_3OH \gg Cl_3CCH_2OH$.

One may legitimately raise the question whether the solubility of the hydrogen halide in the alcohol (at a fixed temperature) actually constitutes a measure of the basicity of the alcohol; or rather does it represent a combination, in varying proportions, of the base strength, hydrogen-bonding interactions between solute and solvent molecules, dipole-dipole interactions between solute and solvent, polarizability effects, and extraneous ionic field effects.²¹ Conductance measurements²² on these systems have shown that the interaction is predominantly one of proton transfer since solutions of HCl in alcohols produce considerable conductivity, the A_0 in the case of HCl in MeOH approaching that of HCl in $H_2O.^{23}$

We have reported⁷ in a recent paper that these HCl solubilities. S, can be quantitatively related to the ionization energies of the alcohol by means of a "relative basicity parameter", β , referred to H₂O as the standard, where

$$\beta = (S_{\text{ROH}}/S_{\text{HOH}}) - 1 \tag{2}$$

It was shown, in fact, that β is a linear function of the ionization potentials of the alcohols.⁷

It would appear, therefore, that the HCl solubility data *are* actually representative of the basicity of alcohols, and should also, therefore, correlate with the polar and inductive substituent constants, σ^* and σ_1 . Such, indeed, we find to be the case. Table 1 presents the solubility data, and the $\sigma^{*,24}$ and σ_1^{25} values for the corresponding R-group of the alcohol (or water). In order to interpolate water into the series of alcohols, we have calculated the solubility of gaseous HCl in H₂O at 10° from data in the literature.²⁶ Also included in Table 1 are the "relative basicity parameters", β . The data are presented graphically in Fig 1 where the β values are plotted as a function of σ^* , and it is easily seen that an excellent correlation exists. Note that water has been included as a special case of the simplest alcohol and it fits right into the correlation.

It is common knowledge that the Hammett and the Taft equations are linear freeenergy relationships²⁸ and, as such, involve log K or log k functions. It is apparent,

3778

ROH	S HCl Solubility (mol HCl/mol ROH)	β "Relative basicity parameters"	σ*	σι			
нон	0.380*	0	+0.49	0			
MeOH	0.857	1.26	0	-0-046			
EtOH	0-950	1.50	-0.10	-0.055			
n-PrOH	0.956	1.52	-0.12	- 0-058			
n-BuOH	0-964	1.53	-0-13	-0-060*			
i-PrOH	1.030	1.71	-0-19	- 0.064			
t-BuOH	1.115	1.93	-0-30	-0-074			
cy-C ₆ H ₁₁ OH	1.030	1.71	-0.15	-0.027e			
CICH ₂ CH ₂ OH	0.550	0.45	+0.38	4			
Cl ₃ CCH ₂ OH	0.087	-0.77	+0.90%	4			
F ₃ CCH ₂ OH	0.060	-0.84	+0.92	4			

TABLE 1

" Calculated from solubility data in Ref. 26.

^b Estimate.

^c Newer value suggested in Ref. 27.

* Reliable value not available.

* The σ_1 value for cyclohexyl is obviously in error and is not used in the plots.

therefore, that our "relative basicity parameter"²⁹ must be essentially a ratio log (K_1/K_2) . We have decided (as described previously)⁷ to select arbitrarily one of the values for $H_3\dot{O}$ upon which to construct a pK_{BH^+} scale for alcohols and water. The value selected was that of Hammett and Deyrup,¹⁷ - 3.43, for pK_{BH^+} of $H_3\dot{O}$, since this was obtained by what appears to be a valid experimental procedure and it is, incidentally, the median (and nearly the mean) value of the five quoted above. The

FIG. 1. A plot of the relative basicity parameter, β , against the polar substituent constants, σ^*

L. S. LEVITT and B. W. LEVITT

relation of Fig 1 makes it apparent that the β values²⁹ are linear in σ^* , and, therefore, we must have a linear free-energy relationship,^{7, 28} Thus,

$$\beta = \log \left[\frac{K_{BH^+} (H_2 O)}{K_{BH^+} (R O H)} \right]$$
(3)

from which

 $pK_{BH^+}(ROH) = pK_{BH^+}(H_2O) + \beta = -3.43 + \beta$ (4)

In Table 2, the pK_{BH+} values calculated from Eq. (4) are presented.

In Fig 2 we have plotted the new pK_{BH^+} values for the alcohols versus the corresponding σ^* values from Table 1. The excellent correlation would appear to

		Calculated pK _{BH} .	values for alcohols	
Al	From β (Eq. 4)	pκ From σ*	^{BH*} From σ _I	From E ₁ (Eq. 1)
Alconol		(Eq. 6)	(Eq. 8)	
нон	- 3·43*	- 3.33	- 3.43	- 3.44
MeOH	-2.17	-2.18	-2.21	- 2·17
EtOH	- 1.93	- 1·94	- 1.97	1·92
n-PrOH	- 1.91	-1·90	- 1.89	- 1.70
n-BuOH	-1.90	<u>- 1·87</u>	-1.83	- 1.68
-PrOH	-1·72	- 1·73	-1.73	-1.67
-BuOH	-1.49	- 1· 4 7	- 1.46	~1.49
y-C ₆ H₁1OH	-1.72	-1.82	b	ь
CICH ₂ CH ₂ OH	- 2·98	- 3.08	ð	b
Cl ₃ CCH ₂ OH	-4.20	- 4 ·30	b	ð
F ₃ CCH ₂ OH	- 4 ·27	- 4 ·35	6	b

TABLE	2
-------	---

" Standard.

^b Not available.

justify the assumptions and the procedures adopted here. It should be noted that our pK_{BH+} value for $CH_3\dot{O}H_2$ (-2.17) is in close agreement with the older Raman experimental⁹ value, -2.2, in fair agreement with the H₂SO₄ solubility value^{10, 11} of -2.5, but in poor agreement with the newer Raman value¹² of -4.86. The equation for the straight line of Fig 2 relating the pK_{BH^+} of $R\dot{O}H_2$ to the polar substituent constants is given by:

$$pK_{BH^+} = -2.18 + \rho^* \sigma^*$$
 (5)

The slope of the line, ρ^* , is found to be -2.36 and therefore:

$$pK_{BH^+} = -2.18 - 2.36 \,\sigma^*. \tag{6}$$

The reaction constant, ρ^* , may be compared with those obtained for $R\dot{N}H_3$ as an acid³ ($\rho^* = -3.14$) and also for $R\dot{P}H_3$ ($\rho^* = -2.64$).⁴ Also included in Table 2 are the p K_{BH+} values calculated from Eq. (6) and from the I.P. (Eq. 1).⁷ The agreement is seen to be quite good.

3780

Should a different value for the pK_{BH+} of H_3O^+ be adopted, this relation should still be valid, and the only change would be a shift in the line of Fig 2 up or down, correspondingly.

The high degree of correlation between the pK_{BH^+} 's of the alcohols and σ^* should likewise be true for pK_{BH^+} and σ_1 values for alkyl groups. Using the R-groups whose σ_1 's are known to at least two figures,²⁵ we have constructed the other plot in Fig 2

FIG 2. Plots of the calculated pK_{BH+} versus σ^* and the inductive substituent constant, σ_I . The pK_{BH+} scale to the left pertains to the σ^* plot and that to the right to the σ_I plot

which, again, gives an excellent correlation between the calculated pK_{BH^+} and the inductive substituent constants. The equation for this correlation line is

$$pK_{BH^+}(ROH) = pK_{BH^+}(H_2O) + \rho_1\sigma_1$$
(7)

The slope, $\rho_{\rm I}$, is found to be -26.6 and therefore:

$$pK_{BH^+}(ROH) = -3.43 - 26.6 \sigma_1 \tag{8}$$

Thus, the value for the inductive reaction constant is somewhat higher than those

observed³⁰ for $R\dot{N}H_3$ ($\rho_I = -20.6$), for $R\dot{N}H_2Et$ ($\rho_I = -20.2$) and for N-substituted guanidinium ions, $RNH-C(NH_2)_2^+$ ($\rho_I = -24.1$). The large value obtained for the inductive reaction constant indicates that the basicity of the set of alcohols correlated here through the new pK_{BH^+} values is extremely susceptible to small changes in the inductive properties of the attached alkyl substituent on the oxygen of the alcohol molecule.

As we noted in footnote (e) of Table 1, the σ_1 value for cyclohexyl must be greatly in error. This is obvious merely on comparing the tabulated values for σ^* for C_6H_{11} -(between n-Bu and i-Pr) with the σ_1 value for this group (between H and Me). This observation along with the experimental β value leads to a new and better estimate of $\sigma_1 = -0.062$ for cy- C_6H_{11} . In similar fashion we estimate the following values of σ_1 for the haloalkyl groups: ClCH₂CH₂— (-0.015), Cl₃CCH₂— (+0.031), and F₃CCH₂— (+0.033).

REFERENCES

- ¹ G. B. Barlin and D. D. Perrin, Quart. Rev. 20, 75 (1966)
- ² J. Clark and D. D. Perrin. Ibid. 18, 295 (1964)
- ³ H. K. Hall, J. Am. Chem. Soc. 79, 5441 (1957)
- ⁴ W. A. Henderson, C. A. Streuli, *Ibid.* 82, 5791 (1960)
- ⁵ P. Ballinger and F. A. Long, *Ibid.* 82, 795 (1960)
- ⁶ The basicity constants are identical with the hydrolysis constants of the conjugate acids, ROH⁺₂, of the alcohols
- ⁷ L. S. Levitt and B. W. Levitt, J. Phys. Chem. 74, 1812 (1970)
- ⁸ E. M. Arnett in Prog. Phys. Org. Chem. 1, 223 (1963)
- ⁹ N. C. Deno and M. J. Wisotsky, J. Am. Chem. Soc. 85, 1735 (1963)
- ¹⁰ E. M. Arnett and J. N. Anderson, *Ibid.* 85, 1542 (1963)
- ¹¹ N. C. Deno and J. O. Turner, *Ibid.* 88, 1969 (1966)
- ¹² R. E. Weston, S. Ehrenson and K. Heinzinger, Ibid. 89, 481 (1967)
- ¹³ W. B. Nixon and M. M. Bursey, Tetrahedron Letters 4389 (1970)
- ¹⁴ J. I. Brauman and L. K. Blair, J. Am. Chem. Soc. 90, 6561 (1968); 92, 5986 (1970) have found that the gas-phase acidities of the alcohols follow a trend opposite to that observed for the solution acidities. but the same trend as the solution basicities. Recent quantum mechanical calculations by W. J. Hehre and J. A. Pople, Tetrahedron Letters 34, 2959 (1970) have been used to estimate total energies of the neutral, protonated, and deprotonated molecules with the result that they have been able to reproduce the known orderings of gas-phase proton affinities. It appears that methyl substitution makes possible the stabilization of both negative and positive ions relative to a neutral molecule (MeOH > H₂O in both gas-phase acidity and basicity) by providing an extended structure which can be more effectively polarized by both cationic and anionic centers. See also A. Streitwieser, P. H. Owens and R. Wolf. Tetrahedron Letters 38, 3385 (1970); and W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 51, 2657 (1969)
- ¹⁵ J. N. Bronsted and W. F. K. Wynne-Jones, Trans. Faraday Soc. 25, 59 (1929)
- ¹⁶ H. Lemaire and H. J. Lucas, J. Am. Chem. Soc. 73, 5198 (1951); T. L. Smith and J. H. Elliot, Ibid. 75 3566 (1953)
- ¹⁷ L. P. Hammett and A. J. Deyrup, *Ibid.* 54, 4239 (1932)
- ¹⁸ W. Smith, Jr., Thesis, Harvard Univ. (1960)
- ¹⁹ N. C. Deno and R. W. Taft, Jr., J. Am. Chem. Soc. 76, 244 (1954)
- ²⁰ W. Gerrard and E. D. Macklen, J. Appl. Chem. 9, 85 (1959); 9, 89 (1959); Chem. Rev. 59, 1105 (1959)
- ²¹ F. Franks and D. J. G. Ives, Quart. Rev. 20, 1 (1966); V. A. Palma, U. L. Haldna and A. J. Talvik in The Chemistry of the Carbonyl Group, p. 421. Interscience, New York (1966)
- ²² T. Shedlovsky and R. L. Kay, J. Phys. Chem. 60, 151 (1956); A. M. El-Aggan, D. C. Bradley and W. Wardlow, J. Chem. Soc. 2092 (1958); G. C. Janz and S. S. Danyluk, Chem. Rev. 60, 209 (1969)

3782

- ²³ It should be kept in mind that many of these solutions are approximately 50 mole % with respect to HCl and are therefore quite comparable to each other. Small differences in the dielectric constant of the pure alcohol will not cause much difference in the over-all dielectric constant of the resulting solution
- ²⁴ R. W. Taft, Jr. in M. S. Newman, Steric Effects in Organic Chemistry, John Wiley and Sons, New York (1956)
- ²⁵ R. W. Taft, Jr. and I. C. Lewis, J. Am. Chem. Soc. 80, 2436 (1958); Tetrahedron 5, 210 (1959)
- ²⁶ N. A. Lange, Ed., Handbook of Chemistry, Handbook Publishers, Sandusky, Ohio, p. 1246 (1944)
- ²⁷ L. S. Levitt and B. W. Levitt, Chem. and Ind. 990 (1970); see also B. W. Levitt and L. S. Levitt, Experientia 26, 1183 (1970), and Israel J. Chem., in press
- ²⁸ P. R. Wells, Chem. Rev. 63, 171 (1963)
- ²⁹ Mathematical definitions of β differing from that given in Eq. (2) and still linear in σ^* are possible, as will be discussed in a future paper
- ³⁰ We have recently shown²⁷ that the ionization potentials of the alcohols are also a linear function of the σ^* and the σ_1 values, in accordance with the relation $E_{t(ROH)} = +10.8 + 3.44\sigma^* = 12.6 + 37.5 \sigma_t$. If E_1 be eliminated between this Eq. and Eq. (1) one again obtains Eq.'s (6) and (8). It should also be noted, by comparison of Eq.'s (4) and (7), that $\beta = \rho_1 \sigma_1$.
- ³¹ M. Charton, J. Org. Chem. 30, 969 (1965)